Manufacturer: Solarmax
Model #: SM 18MT3A
Rated Maximum Continuous Output Power: 17.687 kW
Night Tare Loss: -0.46 W
Vmin: 400 Vdc
Vnom: 595 Vdc
Vmax: 850 Vdc

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>Wtd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vmin 400</td>
<td>95.4</td>
<td>96.4</td>
<td>96.9</td>
<td>97.1</td>
<td>96.7</td>
<td>96.4</td>
<td>96.7</td>
</tr>
<tr>
<td>Vnom 595</td>
<td>96.2</td>
<td>97.5</td>
<td>97.5</td>
<td>97.4</td>
<td>97.4</td>
<td>97.0</td>
<td>97.4</td>
</tr>
<tr>
<td>Vmax 850</td>
<td>96.5</td>
<td>97.6</td>
<td>97.7</td>
<td>97.7</td>
<td>97.5</td>
<td>97.4</td>
<td>97.5</td>
</tr>
</tbody>
</table>

CEC Efficiency = 97.0%
Inverter Efficiency Data

Minimum of 5 samples required

Table 1: Output Power and Efficiency at Various Voltage Levels

<table>
<thead>
<tr>
<th>Specified Voltage</th>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
<th>Sample #4</th>
<th>Sample #5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%) of rated</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(%)</td>
<td>(Vdc)</td>
<td>(kW)</td>
</tr>
<tr>
<td>10% Vmin</td>
<td>1.6693</td>
<td>400.42</td>
<td>95.380</td>
<td>1.6691</td>
<td>400.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% Vmin</td>
<td>3.5292</td>
<td>400.46</td>
<td>96.420</td>
<td>3.527</td>
<td>400.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30% Vmin</td>
<td>5.3227</td>
<td>400.53</td>
<td>96.880</td>
<td>5.326</td>
<td>400.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% Vmin</td>
<td>8.918</td>
<td>400.78</td>
<td>97.139</td>
<td>8.915</td>
<td>400.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75% Vmin</td>
<td>13.114</td>
<td>400.85</td>
<td>96.677</td>
<td>13.11</td>
<td>400.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% Vmin</td>
<td>17.592</td>
<td>400.98</td>
<td>96.427</td>
<td>17.59</td>
<td>400.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% Vnom</td>
<td>1.7025</td>
<td>594.38</td>
<td>96.192</td>
<td>1.704</td>
<td>594.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% Vnom</td>
<td>3.5297</td>
<td>594.88</td>
<td>97.444</td>
<td>3.531</td>
<td>594.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30% Vnom</td>
<td>5.3596</td>
<td>594.93</td>
<td>97.527</td>
<td>5.365</td>
<td>594.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% Vnom</td>
<td>8.9334</td>
<td>594.69</td>
<td>97.417</td>
<td>8.936</td>
<td>594.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75% Vnom</td>
<td>13.026</td>
<td>595.14</td>
<td>97.428</td>
<td>13.02</td>
<td>595.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% Vnom</td>
<td>17.706</td>
<td>594.89</td>
<td>97.032</td>
<td>17.71</td>
<td>594.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% Vmax</td>
<td>1.6853</td>
<td>849.85</td>
<td>96.484</td>
<td>1.689</td>
<td>849.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% Vmax</td>
<td>3.5698</td>
<td>849.84</td>
<td>97.629</td>
<td>3.565</td>
<td>849.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30% Vmax</td>
<td>5.4114</td>
<td>849.91</td>
<td>97.789</td>
<td>5.41</td>
<td>849.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% Vmax</td>
<td>8.8932</td>
<td>850.02</td>
<td>97.697</td>
<td>8.886</td>
<td>850.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75% Vmax</td>
<td>13.294</td>
<td>850.03</td>
<td>97.503</td>
<td>13.3</td>
<td>850.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% Vmax</td>
<td>17.657</td>
<td>849.67</td>
<td>97.384</td>
<td>17.66</td>
<td>849.55</td>
</tr>
</tbody>
</table>

Table 2: Output Power and Efficiency at Various Voltage Levels

<table>
<thead>
<tr>
<th>Specified Voltage</th>
<th>Sample #6</th>
<th>Sample #7</th>
<th>Sample #8</th>
<th>Sample #9</th>
<th>Sample #10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(%) of rated</td>
<td>(Vdc)</td>
<td>(kW)</td>
<td>(%)</td>
<td>(Vdc)</td>
<td>(kW)</td>
</tr>
<tr>
<td>10% Vmin</td>
<td>1.6693</td>
<td>400.42</td>
<td>95.380</td>
<td>1.6691</td>
<td>400.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% Vmin</td>
<td>3.5292</td>
<td>400.46</td>
<td>96.420</td>
<td>3.527</td>
<td>400.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30% Vmin</td>
<td>5.3227</td>
<td>400.53</td>
<td>96.880</td>
<td>5.326</td>
<td>400.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% Vmin</td>
<td>8.918</td>
<td>400.78</td>
<td>97.139</td>
<td>8.915</td>
<td>400.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75% Vmin</td>
<td>13.114</td>
<td>400.85</td>
<td>96.677</td>
<td>13.11</td>
<td>400.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% Vmin</td>
<td>17.592</td>
<td>400.98</td>
<td>96.427</td>
<td>17.59</td>
<td>400.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% Vnom</td>
<td>1.7025</td>
<td>594.38</td>
<td>96.192</td>
<td>1.704</td>
<td>594.37</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% Vnom</td>
<td>3.5297</td>
<td>594.88</td>
<td>97.444</td>
<td>3.531</td>
<td>594.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30% Vnom</td>
<td>5.3596</td>
<td>594.93</td>
<td>97.527</td>
<td>5.365</td>
<td>594.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% Vnom</td>
<td>8.9334</td>
<td>594.69</td>
<td>97.417</td>
<td>8.936</td>
<td>594.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75% Vnom</td>
<td>13.026</td>
<td>595.14</td>
<td>97.428</td>
<td>13.02</td>
<td>595.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% Vnom</td>
<td>17.706</td>
<td>594.89</td>
<td>97.032</td>
<td>17.71</td>
<td>594.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10% Vmax</td>
<td>1.6853</td>
<td>849.85</td>
<td>96.484</td>
<td>1.689</td>
<td>849.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% Vmax</td>
<td>3.5698</td>
<td>849.84</td>
<td>97.629</td>
<td>3.565</td>
<td>849.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30% Vmax</td>
<td>5.4114</td>
<td>849.91</td>
<td>97.789</td>
<td>5.41</td>
<td>849.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% Vmax</td>
<td>8.8932</td>
<td>850.02</td>
<td>97.697</td>
<td>8.886</td>
<td>850.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75% Vmax</td>
<td>13.294</td>
<td>850.03</td>
<td>97.503</td>
<td>13.3</td>
<td>850.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% Vmax</td>
<td>17.657</td>
<td>849.67</td>
<td>97.384</td>
<td>17.66</td>
<td>849.55</td>
</tr>
</tbody>
</table>