Manufacturer: General Electric Company

Model #: PVIA5000NA1240 (240 Vac)

Rated Maximum Continuous Output Power: 5.24 kW Night Tare Loss: 0.20 W

Vmin: 150 Vdc Vnom: 380 Vdc Vmax: 400 Vdc

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vmin 150</td>
<td>91.8</td>
<td>94.1</td>
<td>94.6</td>
<td>94.7</td>
<td>94.3</td>
<td>93.5</td>
</tr>
<tr>
<td>Vnom 380</td>
<td>92.5</td>
<td>95.1</td>
<td>96.1</td>
<td>96.2</td>
<td>95.9</td>
<td>95.6</td>
</tr>
<tr>
<td>Vmax 400</td>
<td>92.3</td>
<td>95.3</td>
<td>95.8</td>
<td>96.1</td>
<td>95.9</td>
<td>95.5</td>
</tr>
</tbody>
</table>

CEC Efficiency = 95.5%

Equipment Used:

<table>
<thead>
<tr>
<th>Asset#</th>
<th>Description</th>
<th>Mfg</th>
<th>Model</th>
<th>Cal Date</th>
<th>Cal Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC0233</td>
<td>Hybrid Recorder</td>
<td>YOKOGAWA</td>
<td>DR 230</td>
<td>Nov. 18, 2010</td>
<td>Nov. 17, 2011</td>
</tr>
<tr>
<td>EC0229</td>
<td>Humidity Chamber</td>
<td>TERCHY</td>
<td>MHU-800LSA</td>
<td>Jul. 9, 2010</td>
<td>Jul. 8, 2011</td>
</tr>
</tbody>
</table>

Test Engineer: Alan Weng Date: Feb. 21 - Mar. 8, 2011
<table>
<thead>
<tr>
<th>Specified</th>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
<th>Sample #4</th>
<th>Sample #5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output Power (kW)</td>
<td>Input Voltage (Vdc)</td>
<td>Efficiency (%)</td>
<td>Output Power (kW)</td>
<td>Input Voltage (Vdc)</td>
</tr>
<tr>
<td>10% Vmin</td>
<td>0.50 154.72</td>
<td>91.81</td>
<td>0.50 154.24</td>
<td>91.81</td>
<td>0.50 154.20</td>
</tr>
<tr>
<td>20% Vmin</td>
<td>1.14 152.44</td>
<td>94.06</td>
<td>1.14 152.38</td>
<td>94.13</td>
<td>1.14 152.38</td>
</tr>
<tr>
<td>30% Vmin</td>
<td>1.70 152.36</td>
<td>94.66</td>
<td>1.69 152.41</td>
<td>94.66</td>
<td>1.70 152.32</td>
</tr>
<tr>
<td>50% Vmin</td>
<td>2.61 151.98</td>
<td>94.74</td>
<td>2.61 151.96</td>
<td>94.71</td>
<td>2.61 151.90</td>
</tr>
<tr>
<td>75% Vmin</td>
<td>3.62 151.73</td>
<td>94.30</td>
<td>3.62 151.90</td>
<td>94.29</td>
<td>3.62 151.81</td>
</tr>
<tr>
<td>100% Vmin</td>
<td>4.88 152.15</td>
<td>93.48</td>
<td>4.88 152.36</td>
<td>93.46</td>
<td>4.88 152.21</td>
</tr>
<tr>
<td>10% Vnom</td>
<td>0.49 403.36</td>
<td>91.99</td>
<td>0.49 401.91</td>
<td>92.74</td>
<td>0.49 401.53</td>
</tr>
<tr>
<td>20% Vnom</td>
<td>1.13 388.95</td>
<td>95.00</td>
<td>1.13 375.81</td>
<td>95.37</td>
<td>1.12 374.38</td>
</tr>
<tr>
<td>30% Vnom</td>
<td>1.71 384.67</td>
<td>95.13</td>
<td>1.71 388.55</td>
<td>96.12</td>
<td>1.71 387.40</td>
</tr>
<tr>
<td>50% Vnom</td>
<td>2.64 381.84</td>
<td>95.12</td>
<td>2.65 382.92</td>
<td>96.19</td>
<td>2.64 384.18</td>
</tr>
<tr>
<td>75% Vnom</td>
<td>3.68 380.05</td>
<td>95.88</td>
<td>3.68 379.89</td>
<td>95.93</td>
<td>3.70 384.38</td>
</tr>
<tr>
<td>100% Vnom</td>
<td>5.00 384.46</td>
<td>95.58</td>
<td>5.00 382.06</td>
<td>95.60</td>
<td>4.99 380.71</td>
</tr>
<tr>
<td>10% Vmax</td>
<td>0.49 423.26</td>
<td>92.33</td>
<td>0.49 421.41</td>
<td>92.25</td>
<td>0.48 426.37</td>
</tr>
<tr>
<td>20% Vmax</td>
<td>1.15 409.64</td>
<td>95.47</td>
<td>1.14 411.58</td>
<td>95.43</td>
<td>1.14 404.89</td>
</tr>
<tr>
<td>30% Vmax</td>
<td>1.69 402.23</td>
<td>95.79</td>
<td>1.70 407.92</td>
<td>95.98</td>
<td>1.69 400.71</td>
</tr>
<tr>
<td>50% Vmax</td>
<td>2.64 404.45</td>
<td>95.13</td>
<td>2.64 400.12</td>
<td>96.12</td>
<td>2.64 404.12</td>
</tr>
<tr>
<td>75% Vmax</td>
<td>3.69 401.94</td>
<td>95.93</td>
<td>3.68 402.13</td>
<td>95.86</td>
<td>3.69 404.80</td>
</tr>
<tr>
<td>100% Vmax</td>
<td>4.99 403.69</td>
<td>95.52</td>
<td>5.00 403.65</td>
<td>95.49</td>
<td>5.00 401.69</td>
</tr>
</tbody>
</table>