Manufacturer: Fronius International GmbH

Model #: Fronius IG Plus 3.0-1 uni (208V)

Rated Maximum Continuous Output Power: 3.00 kW
Night Tare Loss: 0.62 W

Vmin: 230 Vdc
Vnom: 366 Vdc
Vmax: 480 Vdc

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>50%</th>
<th>75%</th>
<th>100%</th>
<th>Wtd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vmin 230</td>
<td>92.2</td>
<td>94.4</td>
<td>95.1</td>
<td>95.3</td>
<td>94.9</td>
<td>94.1</td>
<td>94.8</td>
</tr>
<tr>
<td>Vnom 366</td>
<td>92.5</td>
<td>95.2</td>
<td>95.3</td>
<td>95.9</td>
<td>95.8</td>
<td>95.5</td>
<td>95.6</td>
</tr>
<tr>
<td>Vmax 480</td>
<td>92.2</td>
<td>94.5</td>
<td>94.5</td>
<td>95.2</td>
<td>95.3</td>
<td>95.1</td>
<td>95.0</td>
</tr>
</tbody>
</table>

CEC Efficiency = 95.0%
Inverter Efficiency Data

Minimum of 5 samples required

<table>
<thead>
<tr>
<th>Specified</th>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
<th>Sample #4</th>
<th>Sample #5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output Power</td>
<td>Output Power</td>
<td>Output Power</td>
<td>Output Power</td>
<td>Output Power</td>
</tr>
<tr>
<td>(% of rated)</td>
<td>Input Voltage</td>
<td>Input Voltage</td>
<td>Efficiency</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
<tr>
<td>(% of rated)</td>
<td>Input Voltage</td>
<td>Input Voltage</td>
<td>Efficiency</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
<tr>
<td>(% of rated)</td>
<td>Input Voltage</td>
<td>Input Voltage</td>
<td>Efficiency</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
<tr>
<td>(% of rated)</td>
<td>Input Voltage</td>
<td>Input Voltage</td>
<td>Efficiency</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
<tr>
<td>(% of rated)</td>
<td>Input Voltage</td>
<td>Input Voltage</td>
<td>Efficiency</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specified</th>
<th>Sample #6</th>
<th>Sample #7</th>
<th>Sample #8</th>
<th>Sample #9</th>
<th>Sample #10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output Power</td>
<td>Output Power</td>
<td>Output Power</td>
<td>Output Power</td>
<td>Output Power</td>
</tr>
<tr>
<td>(% of rated)</td>
<td>Input Voltage</td>
<td>Input Voltage</td>
<td>Efficiency</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
<tr>
<td>(% of rated)</td>
<td>Input Voltage</td>
<td>Input Voltage</td>
<td>Efficiency</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
<tr>
<td>(% of rated)</td>
<td>Input Voltage</td>
<td>Input Voltage</td>
<td>Efficiency</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
<tr>
<td>(% of rated)</td>
<td>Input Voltage</td>
<td>Input Voltage</td>
<td>Efficiency</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
<tr>
<td>(% of rated)</td>
<td>Input Voltage</td>
<td>Input Voltage</td>
<td>Efficiency</td>
<td>Input Voltage</td>
<td>Efficiency</td>
</tr>
</tbody>
</table>