Manufacturer: American Electric Technologies, Inc. (AETI)

Model #: ISIS-1000-410-60 + NEMA TP-1 transformer

Rated Maximum Continuous Output Power: 1000.00 kW
Night Tare Loss: 350 or Less W

Vmin: 610 Vdc
Vnom: 720 Vdc
Vmax: 1000 Vdc

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>Power Level (%; kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10% 20% 30% 50% 75% 100%</td>
</tr>
<tr>
<td>Vmin 610</td>
<td>94.5 96.2 96.7 96.9 97.1 96.7 96.9</td>
</tr>
<tr>
<td>Vnom 720</td>
<td>94.0 95.8 96.2 96.5 96.4 96.5 96.3</td>
</tr>
<tr>
<td>Vmax 1000</td>
<td>92.8 94.8 95.5 95.8 95.7 95.4 95.5</td>
</tr>
</tbody>
</table>

CEC Efficiency = 96.0%
Manufacturer: American Electric Technologies, Inc. (AETI)

Model #: ISIS-1000-410-60

Rated Maximum Continuous Output Power: 1000.00 kW
Night Tare Loss: 350 or Less W

Vmin: 610 Vdc Vnom: 720 Vdc Vmax: 1000 Vdc

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>Power Level (%; kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10% 20% 30% 50% 75% 100%</td>
</tr>
<tr>
<td>Vmin 610</td>
<td>97.0 97.5 97.7 97.8 98.2 98.0</td>
</tr>
<tr>
<td>Vnom 720</td>
<td>96.6 97.1 97.2 97.4 97.5 97.8</td>
</tr>
<tr>
<td>Vmax 1000</td>
<td>95.2 96.1 96.5 96.7 96.7 96.7</td>
</tr>
</tbody>
</table>

Inverter Efficiency w/o Transformer= 97.5%

Transformer Efficiency

<table>
<thead>
<tr>
<th>Input Voltage (Vdc)</th>
<th>Power Level (%; kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10% 20% 30% 50% 75% 100%</td>
</tr>
<tr>
<td>Vmin 610</td>
<td>97.4 98.7 99 99.1 98.9 98.6</td>
</tr>
<tr>
<td>Vnom 720</td>
<td>97.4 98.7 99 99.1 98.9 98.6</td>
</tr>
<tr>
<td>Vmax 1000</td>
<td>97.4 98.7 99 99.1 98.9 98.6</td>
</tr>
</tbody>
</table>
Inverter Efficiency Data

Minimum of 5 samples required

<table>
<thead>
<tr>
<th>Specified</th>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
<th>Sample #4</th>
<th>Sample #5</th>
<th>Sample #6</th>
<th>Sample #7</th>
<th>Sample #8</th>
<th>Sample #9</th>
<th>Sample #10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output Power (kW)</td>
<td>Input Voltage (Vdc)</td>
<td>Efficiency (%)</td>
<td>Output Power (kW)</td>
<td>Input Voltage (Vdc)</td>
<td>Efficiency (%)</td>
<td>Output Power (kW)</td>
<td>Input Voltage (Vdc)</td>
<td>Efficiency (%)</td>
<td>Output Power (kW)</td>
</tr>
<tr>
<td>10% Vmin</td>
<td>99 612 96.980</td>
<td>104 613 96.860</td>
<td>102 607 94.740</td>
<td>104 608 99.540</td>
<td>102 612 96.960</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20% Vmin</td>
<td>203 606 97.420</td>
<td>202 615 97.500</td>
<td>198 615 97.460</td>
<td>198 608 97.540</td>
<td>100 607 97.510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30% Vmin</td>
<td>309 622 97.500</td>
<td>310 616 97.960</td>
<td>309 607 97.670</td>
<td>299 607 97.640</td>
<td>299 607 97.640</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50% Vmin</td>
<td>513 612 97.950</td>
<td>491 615 97.830</td>
<td>497 613 97.830</td>
<td>511 610 97.710</td>
<td>513 613 97.820</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75% Vmin</td>
<td>779 608 96.130</td>
<td>802 613 98.600</td>
<td>805 609 98.620</td>
<td>800 609 98.640</td>
<td>807 614 98.630</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% Vmin</td>
<td>1023 617 97.460</td>
<td>1013.4 715 98.240</td>
<td>998 609 98.460</td>
<td>973 607 97.280</td>
<td>992 616 98.310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specified</th>
<th>Sample #6</th>
<th>Sample #7</th>
<th>Sample #8</th>
<th>Sample #9</th>
<th>Sample #10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output Power (kW)</td>
<td>Input Voltage (Vdc)</td>
<td>Efficiency (%)</td>
<td>Output Power (kW)</td>
<td>Input Voltage (Vdc)</td>
</tr>
<tr>
<td>10% Vnom</td>
<td>100 717 96.520</td>
<td>100 723 96.520</td>
<td>100 716 96.610</td>
<td>101 716 96.580</td>
<td>101 716 96.550</td>
</tr>
<tr>
<td>20% Vnom</td>
<td>200 713 97.070</td>
<td>200 718 97.040</td>
<td>200 723 97.040</td>
<td>202 723 97.090</td>
<td>200 712 97.100</td>
</tr>
<tr>
<td>30% Vnom</td>
<td>292 723 97.120</td>
<td>303 719 97.200</td>
<td>304 710 97.170</td>
<td>304 703 97.140</td>
<td>299 702 97.190</td>
</tr>
<tr>
<td>50% Vnom</td>
<td>496 713 97.420</td>
<td>495 721 97.390</td>
<td>501 718 97.380</td>
<td>514 722 97.360</td>
<td>506 719 97.360</td>
</tr>
<tr>
<td>75% Vnom</td>
<td>753 725 97.550</td>
<td>748 723 97.500</td>
<td>752 717 97.480</td>
<td>751 725 97.460</td>
<td>753 726 97.440</td>
</tr>
<tr>
<td>100% Vnom</td>
<td>975 720 98.200</td>
<td>981 752 97.820</td>
<td>993 731 98.130</td>
<td>988 726 97.260</td>
<td>999 737 97.850</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specified</th>
<th>Sample #6</th>
<th>Sample #7</th>
<th>Sample #8</th>
<th>Sample #9</th>
<th>Sample #10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Output Power (kW)</td>
<td>Input Voltage (Vdc)</td>
<td>Efficiency (%)</td>
<td>Output Power (kW)</td>
<td>Input Voltage (Vdc)</td>
</tr>
<tr>
<td>10% Vmax</td>
<td>104 998 95.390</td>
<td>103 1001 95.290</td>
<td>98 1001 95.150</td>
<td>101 1000 95.220</td>
<td>101 1003 95.200</td>
</tr>
<tr>
<td>20% Vmax</td>
<td>201 989 96.390</td>
<td>200 1008 96.340</td>
<td>196 1008 95.100</td>
<td>196 997 95.800</td>
<td>197 1000 96.380</td>
</tr>
<tr>
<td>30% Vmax</td>
<td>300 1004 96.420</td>
<td>300 1005 96.430</td>
<td>303 1003 96.460</td>
<td>298 1001 96.500</td>
<td>301 1000 96.450</td>
</tr>
<tr>
<td>50% Vmax</td>
<td>502 994 96.730</td>
<td>501 1000 96.680</td>
<td>507 998 96.690</td>
<td>507 1002 96.680</td>
<td>496 1005 96.640</td>
</tr>
<tr>
<td>75% Vmax</td>
<td>1016 762 96.730</td>
<td>737 1011 96.770</td>
<td>768 1010 96.760</td>
<td>753 1009 96.750</td>
<td>748 1010 96.730</td>
</tr>
<tr>
<td>100% Vmax</td>
<td>1005 1009 96.730</td>
<td>1006 1020 96.750</td>
<td>1006 1015 96.860</td>
<td>1007 1014 96.700</td>
<td>1041 1005 96.750</td>
</tr>
</tbody>
</table>